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Abstract. This paper tries to determine global Arabica Future prices given weather patterns
in Brazil. Brazil accounts for 40% [5] of world’s Coffee production and main producer of Arabica
Future prices, so variation in its production capacities has an impact on Coffee prices around the
world. Coffee beans, like most of the commodities, are sold in US Dollars, so I also took into account
the exchange rates between Brazil Real and US Dollars (BRL/USD). Using time series data and
Machine Learning models, I was able to predict a steady rise in coffee prices. Machine learning
models were effective in predicting prices with weather patterns. Ordinary Linear model, even in
Machine Learning context, didn’t yield effective results
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1. Introduction. Coffee is one of the most popular and most consumed hot
beverages in the world. The world’s coffee production is expected to reach 10.62
[6] Billion kg in 2023 with Brazil accounting for 40% of that production. Other
countries include, Columbia, Vietnam and Ethiopia. Coffee is also one of the world’s
most traded commodities, with the European Union (EU) and Switzerland as top
importer. The EU countries, trades 90% of unroasted green coffee beans, which are
mostly Arabica Coffee beans, 77% of the trade happening in Switzerland.[6] As coffee
beans are agricultural goods, produced mainly in Latin America, variation in weather
patterns in the producing countries, due to Climate Change, will have an impact on
its prices. Since Coffee is also a highly traded commodity, we can also assume that
it is well priced with no arbitrage opportunity. Finally, unlike other commodities
like petroleum, geopolitics has very little impact on its prices. I am applying various
machine learning models to forecasting future prices of Arabica Coffee beans.

2. Description of the research question and the relevant literature. In
the realm of financial markets, commodity prices fundamentally hinge on the princi-
ples of supply and demand inherent to an efficient market. Conversely, stock prices
are influenced by a multitude of factors including changes in management, corporate
scandals, geopolitical events, and shifts in investor sentiment toward a specific com-
pany, rendering stocks considerably more volatile and challenging to predict. Among
various commodities, petroleum stands out due to its significant geopolitical implica-
tions, largely influenced by The Organization of the Petroleum Exporting Countries
(OPEC), which operates akin to a cartel and plays a pivotal role in controlling oil
prices. In contrast, prices for agricultural commodities such as coffee, sugar, soy, and
corn are predominantly governed by basic supply and demand dynamics and tend to
exhibit greater stability.

The focus of this analysis is on coffee, a commodity whose price dynamics are
particularly interesting due to the stable and progressively increasing global demand.
The ubiquity of coffee consumption, whether directly or through caffeine-containing
beverages, supports a relatively stable demand side for coffee beans. Thus, significant
price fluctuations are primarily attributable to variables affecting supply.

Latin America, and Brazil in particular, are critical in the global coffee market
as major producers. Disruptions in this region’s coffee production can, therefore,
have substantial repercussions on global coffee prices. A noteworthy study by the
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United Nations identified weather patterns as the principal driver of Arabica coffee
price volatility in Latin America. The research utilized time series data to explore how
climate change, by introducing more frequent and severe weather anomalies, adversely
impacts production capacity and, consequently, elevates Arabica coffee bean prices.

Moreover, the study underscored the importance of considering exchange rate
fluctuations in the analysis. The primary consumers of coffee, located in the U.S.
and Europe, conduct transactions in U.S. dollars, while producers, particularly in
Brazil, receive payment in their local currency, the Brazilian real. Accounting for
these currency dynamics is essential in constructing a robust model to analyze coffee
prices, enhancing the understanding of how external economic factors interplay with
agricultural production to influence commodity markets.

3. The methodology applied to address the research question. In con-
trast to previous research that predominantly employed linear and non-linear regres-
sion models with multiple control variables to analyze the impact of climate change
on Arabica coffee prices using time series data, this study initially employs Ordinary
Least Square (OLS) models with HC3 covariance type and Huber T. models. Al-
though the results from these models prove to be statistically significant, they lack
economic significance and are not well-suited for forecasting purposes with R2 close
to 0.

Building upon these findings, the present study aims to develop advanced ma-
chine learning models to forecast future Arabica coffee prices. This approach leverages
historical price data and weather patterns, acknowledging the significant influence of
climate change on coffee production. Previous findings, including a 2015 article by
Michon Scott [4], indicate that Arabica coffee beans thrive in temperatures between
18-21°C. However, recent data from Brazilian coffee farming regions show tempera-
ture fluctuations ranging from 15°C to 24°C, which complicate coffee production and
harvesting.

This study will collect and analyze average daily temperatures and precipitation
data from cities in Brazil where Arabica coffee is produced. The data will be processed
through four distinct machine learning models, each undergoing hyperparameter op-
timization. A rigorous cross-validation process will determine the model with the
highest predictive accuracy, establishing its superiority for forecasting purposes.

4. A description of the data set. Obtaining precise and comprehensive his-
torical weather data poses significant challenges. Initially, the Open Weather API
[1] was considered for acquiring rich historical weather data; however, the costs asso-
ciated with downloading extensive historical data were prohibitive. A more fruitful
approach was subsequently employed using MeteoStat [3], an open-source platform
supported by community contributions and Patreon. MeteoStat provides a Python
API that locates the nearest weather station based on provided longitude and latitude
coordinates, offering detailed historical data, including daily weather conditions and
precipitation levels.

To effectively utilize the MeteoStat API, it was essential to first acquire geo-
graphic coordinates for cities and farms within Brazil, where coffee is predominantly
cultivated. This data was sourced from Simplemaps [2], which organizes longitude
and latitude information by city and administrative regions within Brazil. Subse-
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quent research identified Minas Gerais and São Paulo as the primary coffee-producing
regions. Cities outside these areas were excluded from the analysis, focusing the data
collection on relevant locations through the MeteoStat platform. Focusing on cities
where most of the farming occurs helps to have cleaner data. The resulting dataset
includes daily time series data on average temperatures and precipitation from 2019
to 2024. Data preceding 2019 was excluded due to its inconsistency and frequent
absence of daily records.

In parallel with weather data collection, daily Arabica coffee bean prices were
retrieved from the Yahoo Finance API, focusing on futures prices which reflect both
current and anticipated future market conditions. Arabica coffee futures are traded
daily, indicating a highly efficient market environment without price stickiness. This
price data covers the same period as the weather data, from 2019 to 2024.

Additionally, daily exchange rates between the Brazilian Real and the US Dollar
were downloaded from Yahoo Finance for the same time frame. This financial data,
combined with the collected weather data, was compiled into a single panel data
structure using the pandas DataFrame. Each row of the DataFrame corresponds to
daily observations, integrating average weather conditions, Arabica coffee prices, and
exchange rate information.

Analytical methods were then applied to this consolidated dataset. Specifically,
the returns and cumulative returns on Arabica coffee prices were calculated to fa-
cilitate a more nuanced analysis of price trends. Cumulative returns, in particular,
provide a clearer visual and analytical representation of price fluctuations over time,
allowing for a comprehensive assessment of how weather patterns and economic factors
influence coffee market dynamics.

This systematic approach to data collection and analysis underscores the com-
plexities of forecasting commodity prices, highlighting the importance of integrating
diverse data sources to enhance the robustness of predictive models in agricultural
economics. At the end of the data collection and cleaning process, we had a time
series panel data

5. A discussion of the implementation. Prior to any analytical procedures,
the data is normalized by converting all prices into Brazilian Reals, thereby elimi-
nating variations attributable to exchange rate fluctuations. Additionally, the study
acknowledges a temporal lag between shifts in weather patterns and their impact on
coffee futures prices. Typically, adverse weather conditions do not instantaneously
affect coffee yields within the same year; rather, it may take several weeks for such
conditions to significantly influence annual production and subsequently alter mar-
ket prices. Consequently, the adjusted prices are shifted forward by 40 days in the
dataset. This temporal adjustment ensures that the analysis accounts for the delayed
effect of weather changes on coffee prices.

Initially, an examination of coffee bean price trends over several years was con-
ducted, revealing a sharp increase from 2021 to 2022, followed by stabilization in
2022, and a subsequent decline approaching 2023. Subsequent analysis focused on the
average daily temperatures across various cities within the production region. These
temperatures exhibited a distinct cyclical pattern with a pronounced V-shape, peaking
between September and February and declining between June and September. Typ-
ically, the temperatures ranged from lows of around 12°C to highs of approximately
25°C, occasionally reaching up to 30°C, an atypical occurrence for the region. De-
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spite these variations, initial visual assessments did not suggest a correlation between
average temperatures and price fluctuations.

Fig. 5.1. Coffee Prices Fig. 5.2. Average Tempratures

Amore structured approach involved conducting a visual linear regression analysis
using Seaborn’s regression plot, where the dependent variable was the coffee prices
adjusted for exchange rate effects and lagged by 40 days, against the independent
variable of non-lagged average temperatures. This analysis indicated a weak linear
relationship, suggesting that higher temperatures might inversely affect coffee prices,
although the presence of numerous outliers complicates definitive conclusions.

Fig. 5.3. Prices relative to Average Tempratures

Further analysis extended to examining precipitation patterns, which similarly
showed cyclical behavior with minimal amounts for most of the year but significant
increases in December and January. Despite these patterns, initial visual regression
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analysis on precipitation data failed to reveal any clear relationships with coffee prices.
This lack of evident correlation underscores the complexity of these variables’ inter-
actions, necessitating further detailed analysis to ascertain the definitive impact of
weather conditions on coffee pricing trends.

Fig. 5.4. Prices relative to Average Precipitation

Given the presence of outliers identified through visual analysis, I opted to employ
robust regression techniques to enhance the reliability of the results. Specifically, I
utilized the HC3 model, which is advantageous when dealing with heteroscedastic
data—where variance varies across different values of the independent variable, X.
The HC3 model is particularly effective, providing robustness even in smaller samples
by correcting for variations in sample size. Additionally, I implemented the Huber
T model, a robust regression method tailored to mitigate the influence of outliers.
The Huber T model adjusts the impact of extreme values, ensuring they do not
disproportionately affect the overall model accuracy.

Armed with initial findings, I shifted focus to leveraging machine learning tech-
niques to enhance the prediction of coffee prices and associated weather pattern be-
haviors. Utilizing the SciKit Learn library, I set out to develop and implement a
machine learning model tailored for this purpose.

The dataset for the model includes features such as average temperature, average
precipitation, year, and month, with the target variable being the cumulative lagged
returns. From lessons learned in academic settings, I adhered to best practices by
splitting the data into training and testing subsets. Specifically, 80

Given the nature of the data, I categorized the variables into two types: categori-
cal and numerical. The ’Year’ and ’Month’ were treated as categorical data. Although
’Month’ is numerically represented from 1 to 12, it does not possess ordinal properties
that justify numerical treatment, and ’Year’ is categorized similarly for consistency in
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data handling. This categorization is crucial as it addresses the non-linear relationship
these variables may have with the target variable.

Before proceeding with model training, it was essential to perform preprocessing
on the dataset. For the numerical data—average temperatures and precipitation—I
employed the ‘StandardScaler‘ from SciKit Learn. This scaler standardizes the fea-
tures by removing the mean and scaling each feature to unit variance. This normal-
ization process transforms the features to have a zero mean and a standard deviation
of one, which is particularly beneficial for algorithms that presume a normal distribu-
tion of input data. Standardizing the data in this way ensures that no single feature
disproportionately influences the model due to scale differences.

Conversely, for the categorical data, I utilized the ‘OneHotEncoder‘, also from
SciKit Learn. This technique converts categorical variables into a binary numerical
format. It achieves this by creating separate columns for each category within a
feature, where the presence of a category is marked by ’1’ and its absence by ’0’. This
method is employed to effectively manage categorical input within machine learning
models, ensuring that each unique category is properly represented without implying
any ordinal relationship.

By preprocessing the data using ‘StandardScaler‘ for numerical features and ‘One-
HotEncoder‘ for categorical features, the model is well-prepared to interpret the fea-
tures accurately and perform robustly in predicting the dependent variables. This
methodological approach not only aligns with academic teachings but also enhances
the predictive capability of the machine learning model, providing a solid foundation
for insightful data analysis in the context of coffee market dynamics.

To optimize the prediction of coffee prices and weather patterns, I employed vari-
ous machine learning models, each with distinct characteristics and strengths, suitable
for the complexities of the dataset at hand. Utilizing ScikitLearn’s robust functional-
ities, I approached the model selection and hyperparameter tuning systematically.

The methodology began with defining a nested dictionary to organize the dif-
ferent models and their respective hyperparameters, an approach that aligns with
ScikitLearn’s requirements for implementing Pipeline and GridSearchCV frameworks.
The models selected for this study were Random Forest Regression, Gradient Boost-
ing Regression, Linear Regression, and K-Nearest Neighbors Regression, each chosen
for its unique capabilities in handling specific aspects of the dataset.

6. Model Descriptions and Rationales. 1. Random Forest Regression:
This model constructs numerous decision trees during training and outputs the mean
prediction of these trees. It is particularly effective for datasets with high dimen-
sionality and a mixture of numerical and categorical features, providing robustness
against overfitting through its averaging mechanism.

2. Gradient Boosting Regression: By building an ensemble of weak predic-
tion models sequentially, each correcting its predecessor’s errors, Gradient Boosting
optimizes both bias and variance, making it adept at handling complex, noisy datasets.

3. Linear Regression: As a fundamental regression approach, it assumes linear-
ity between the dependent and independent variables. It includes options to manage
multicollinearity, such as ridge regression or Lasso, enhancing model generalization
through regularization.

4. K-Nearest Neighbors Regression (KNN): This non-parametric method
predicts outcomes based on the averages of the ’k’ closest training examples, offering
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high interpretability and flexibility, especially in scenarios where the data distribution
does not meet conventional statistical assumptions.

To validate these models effectively, a 10-fold cross-validation was set up, splitting
the data into ten parts to ensure that each fold serves as a robust test set. Additionally,
an empty list was prepared to collect the results of each model’s performance.

The process continued with implementing GridSearchCV, a powerful tool in Scik-
itLearn designed to conduct an exhaustive search over specified parameter grids. This
method not only automates the optimization of model parameters but also ensures
that the best model performance is achieved by testing all possible combinations of
parameters across the folds of cross-validation.

During the GridSearchCV execution, each model was evaluated, and the results
were documented, including the model name, the best score (typically the R2), and
the hyperparameters that led to the optimal performance. This phase was critical for
identifying the most effective model configurations.

Following the identification of the best models from the grid search, another
round of analysis was conducted. In this phase, a more refined set of hyperparam-
eters, closely aligned with the best-performing models, was tested to fine-tune the
models further. The performance of these configurations was assessed using both R2

and Mean Squared Error (MSE) as metrics, providing a comprehensive view of each
model’s predictive accuracy.

The final step involved deploying the selected models with the identified optimal
parameters to predict the outcomes. The predictions were then plotted alongside the
actual coffee prices to visually assess each model’s performance. This visualization
was crucial in understanding the practical effectiveness of each predictive model in
mirroring the real-world data and making informed decisions based on the model
outputs.

Through this meticulous approach, leveraging ScikitLearn’s advanced capabilities
in machine learning model selection and hyperparameter tuning, the study aimed to
not only predict coffee prices accurately but also to provide insights into the influential
factors affecting these prices, such as weather patterns and their interaction with
market dynamics.

Fig. 6.1. Summary of Implementation chart
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7. Results. In examining our linear regression models, which are robust and
account for heterogeneity, we observe that the results are statistically significant. The
coefficient for Average Temperature is approximately 0.9 at a 1% significance level,
suggesting that at a theoretical temperature of zero, the baseline cumulative return
of coffee beans is around 0.9. Furthermore, an increase in Average Temperatures
correlates with a decrease in cumulative returns by approximately 0.009, a result
statistically significant at the 5% level. However, these results lack economic signifi-
cance, primarily because the highest average temperatures still fall within the optimal
range for coffee production. This implies that any rise in temperatures could enhance
production capacity, thereby reducing prices, as indicated by the negative coefficient.

Additionally, the analysis of Average Precipitation reveals that the constant across
both models is approximately 0.67 at a 1% significance level, indicating that on days
without rain, the cumulative returns stand at 0.67. However, each millimeter of rain
increases cumulative returns by about 0.0116, also significant at the 1% level. This
suggests that rainy days tend to increase cumulative returns and hence prices, which is
counterintuitive since increased rainfall should theoretically boost production capacity
and lower prices.

Given the mixed results and the potential non-linear distribution of data, the
economic significance of these models remains questionable. This underscores the
need for further investigation, possibly with non-linear modeling approaches, to better
understand the dynamics at play.

Table 7.1

[HC3] I [HUBER] I [HC3] II [HUBER] II
const 0.8856*** 0.9214*** 0.6789*** 0.6753***

(0.0942) (0.1028) (0.0159) (0.0155)
Average Temperature -0.0089** -0.0103**

(0.0044) (0.0048)
Average prcp 0.0116*** 0.0142***

(0.0033) (0.0026)
R-squared 0.0032 0.0187
R-squared Adj. 0.0023 0.0178
NO. observations 1217 1217 1171 1171
R-squared 0.00 0.02

Standard errors in parentheses.
* p¡.1, ** p¡.05, ***p¡.01

Machine Learning Models: The two models, Gradient Boosting Regression
and Random Forest Regression, demonstrated superior performance. The efficacy of
these models can be attributed to their inherent capabilities to navigate the complex-
ities often present in datasets characterized by non-linear relationships and intricate
interactions among variables.

Random Forest Regression proved adept due to its robustness in managing
high-dimensional data. This model employs an ensemble of decision trees, each con-
structed from a randomly sampled subset of the data. At each node of a tree, a
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random subset of features is selected, contributing to diversity in the model’s pre-
dictions. This technique, known as ”bagging” or bootstrap aggregating, effectively
mitigates variance without substantial increase in bias, thereby enhancing the overall
prediction accuracy. Moreover, Random Forest’s capability to assimilate diverse data
types and its proficiency in capturing non-linear variable interactions make it par-
ticularly suited for modeling the dynamic interplay between climatic conditions and
coffee price movements.

On the other hand, Gradient Boosting Regression excels by constructing a
sequence of weak prediction models, typically decision trees, where each tree incre-
mentally corrects the errors of its predecessors. This iterative correction process en-
ables the model to improve continuously, optimizing both bias and variance through
successive refinements. Gradient Boosting is adept at handling complex and noisy
data, a common characteristic of datasets where weather conditions directly influence
economic outcomes. Unlike Random Forest, which generates trees independently,
Gradient Boosting strategically focuses on areas poorly explained by previous mod-
els, thereby enhancing model precision over iterations. This methodological approach
is particularly effective in detecting subtle patterns within the data, crucial for fore-
casting the effects of nuanced meteorological variations on coffee prices.

Both models leverage distinct methodologies to address the challenges inherent in
predicting economic indicators influenced by environmental factors. Random For-
est’s approach of reducing variance through averaging multiple indepen-
dent trees and Gradient Boosting’s technique of focusing on sequential
error reduction coalesce to form robust predictive frameworks. These models not
only demonstrate high accuracy in forecasting, but also provide insights into the com-
plex relationships between weather patterns and coffee market dynamics, underscoring
their utility in economic and meteorological studies.

Figure 7.1 & Figure 7.2 Figure 7.1 illustrates that while both Random Forest
Regression, in green, and Gradient Boosting Regression, in blue, provide reasonable
price predictions, in red, a noticeable lag exists between the predicted and observed
prices, attributable to the predictive nature of the models and a deliberate shift in
cumulative returns by several weeks. In contrast, Figure 7.2, which corrects for this
lag, by shifting back the returns and displays significantly improved alignment between
the model predictions and actual prices, demonstrating enhanced accuracy in the
forecasting model.

Figure 7.1 & Figure 7.2 These are the hyperparameters used for both Gradient
Boosting Regressors and Random Forest Regressor to have best R-sq results using
Scikit Learn without overfitting.

1

2 # This is the Pipline for Gradient Boosting Regressor

3 pipeline = Pipeline ([

4 (’preprocessor ’, preprocessor),

5 (’regressor ’, GradientBoostingRegressor(

6 # These are the hyperparameters that result in the best

7 R-Sq results

8 learning_rate =0.1,

9 max_depth=6,

10 min_samples_leaf =1,
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Fig. 7.1. Models Optimizing for R-Sq lagged Fig. 7.2. Models Optimizing for R-Sq

11 min_samples_split =2,

12 n_estimators =150,

13 ))

14 ])

15 pipe =pipeline.fit(X_train , y_train)

16

17 ###########################################################

18

19 # This is the Pipline for Random Forest Regressor

20 pipeline = Pipeline ([

21 (’preprocessor ’, preprocessor),

22 (’regressor ’, RandomForestRegressor(

23 # These are the hyperparameters that result in the best

24 # R-Sq results

25 max_depth =25,

26 max_features=’sqrt’,

27 min_samples_leaf =1,

28 min_samples_split =4,

29 n_estimators =150,

30 ))

31 ])

32 pipe = pipeline.fit(X_train , y_train)

Listing 1
Processing data

Figure 7.3 & Figure 7.4
In these figures, the actual Arabica coffee prices are depicted by the red line,

predictions from the Gradient Boosting Regressor by the blue line, and those from
the Random Forest Regressor by the green line. The Gradient Boosting Regressor
closely mirrors the actual prices, demonstrating enhanced accuracy in Figure 7.4 af-
ter correcting for the lag, thus significantly improving the predictive performance.
Conversely, the Random Forest Regressor displays considerable inconsistency, espe-
cially when optimized for Mean Squared Error (MSE). Characterized by a relatively
flat trend interspersed with abrupt fluctuations, this model’s limited efficacy is at-
tributable to a restrictive max depth parameter set to 1, in stark contrast to the
deeper 25 layers used previously. These observations suggest that in this instance,
the Random Forest Regressor is less suitable for predicting coffee prices based on
weather patterns.
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Fig. 7.3. Models Optimizing for MSE lagged Fig. 7.4. Models Optimizing for MSE

These are the hyperparameters used for both Gradient Boosting Regressors and
Random Forest Regressor to have best MSE results using Scikit Learn without over-
fitting.

1

2 # This is the Pipline for Gradient Boosting Regressor

3 pipeline = Pipeline ([

4 (’preprocessor ’, preprocessor),

5 (’regressor ’, GradientBoostingRegressor

6 # These are the parameters used to Minimise

7 # Mean Squared Error

8 learning_rate =0.1,

9 max_depth=4,

10 min_samples_leaf =2,

11 min_samples_split =2,

12 n_estimators =50,

13 ))

14 ])

15 pipe =pipeline.fit(X_train , y_train)

16

17 ###########################################################

18

19 # This is the Pipline for Random Forest Regressor

20 # The preprocessors are standard scaler for numerical data and

21 # OneHotEncoder for Categorical data

22 pipeline = Pipeline ([

23 (’preprocessor ’, preprocessor),

24 (’regressor ’, RandomForestRegressor(

25 # These are the parameters used to Minimise

26 # Mean Squared Errors

27 max_depth=1,

28 max_features=’sqrt’,

29 min_samples_leaf =1,

30 min_samples_split =2,

31 n_estimators =150,

32 ))

33 ])

34 pipe = pipeline.fit(X_train , y_train)

Listing 2
Processing data
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8. Conclusion. In this study, we found that linear regression models, particu-
larly those adjusting for outliers like HC3 and Huber T, are effective in predicting
coffee prices using weather patterns, yielding statistically significant results. Further
exploration with machine learning models, especially the Gradient Boosting Regres-
sor, after tuning hyperparameters, also proved successful in accurately forecasting
coffee prices.

9. Appendix. OpenAI’s ChatGPT was used for coding assistance and correct-
ing writing issues
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